A Comprehensive Assessment of Household Water Poverty in India

Rida Wanbha Nongbri PhD. Scholar

Department of Humanities & Social Sciences Indian Institute of Technology Madras Date: 26th August 2023

Outline

- Background & Motivation
- Evolution of Water Poverty
- Why this approach?
- Methodology
- Results, Discussion & Robustness
- Conclusion

Background & Motivation

- Lack of access to safe water and sanitation facilities can disproportionately affect marginalised groups hindering or lowering the Human Development Index (HDI) ranking.
- The United Nations Development Program (UNDP, 2006) explores the linkages between water vulnerability and poverty. Highlighting how inadequate access to water and sanitation heightens poverty is crucial for human well-being, productivity and overall development (UNICEF, 2019).
- Achieving SDGs is challenging when more than 2 million people face water stress (UNESCO, 2019), with African and Asian regions facing the highest.
- With 163 million Indian households lacking safe drinking water and 210 million lacking improved sanitation, India faces extreme water stress (NITI Aayog, 2019).

Background & Motivation

Rida Wanbha Nongbri

Indian Institute of Technology Madras

Evolution of Water Poverty

Water Poverty can be defined as the lived condition in a household experiencing insufficient access to water to meet its needs (Kallio *et al.*, 2018).

Uni-dimensional Nature		Multidimensional Nature		
•	Falkenmark and Lindh (1974), Rakin <i>et al.</i> , (1997), Gleick (1996), Ohlsson and Turton (2000), Sullivan (2002), Molle and Mollinga (2003)	Sullivan, 2002; Lawrence <i>et al.</i> , 2003; Sullivan <i>et al.</i> , 2003; Goel <i>et al.</i> , 2020; Ladi <i>et al.</i> ; 2021; Goswami, 2022		

Why this Approach?

	Composite index approach		Alkire-Foster approach
•	Consider WPI at the aggregate stage.	 The control of the cont	his approach requires two distinct omponents – the water poverty headcount ncidence) and an adjustment measure ntensity) – to define water poverty in a ultidimensional context. onsider WPI as the joint distribution of the cidence and intensity. ecomposition nature.

Variable of interest

Table1: Dime	Table1: Dimension, Indicators, cut-off and weight of the MWPI								
Dimensions	imensions Indicators Deprived if								
Access	Source	Does not have access to in-house piped water connection.	0.25						
	Sanitation	Does not have semi-flush toilet facilities.	0.25						
Stress	Supply	Water supply hour per day if less than 4 hours (mean of the data).	0.15						
	Time taken	The time taken to the source from the dwelling area is more than 15 minutes (one-way) (WHO threshold).	0.15						
Quality	Treatment	Do not treat drinking water.	0.1						
Capacity	Adequacy	Drinking water is not adequate.	0.05						
	Storage	Water storage is not available.	0.05						
Source: IHDS	(2005 & 2012)								
Note: Genera	Note: General weight parentheses								

Methodology

Deprivation score $(c_i) =$	$\sum_{j=1}^d w_i g_{ij}^o$
Headcount ration $(H_0) =$	$\frac{q}{n}$
Intensity of poverty $(A) =$	$\frac{1}{q} \sum_{i=1}^{n} c_i(k)$
$\mathbf{MWPI} (M_0) =$	H ₀ x A
Contribution of dimension <i>j</i> to MWPI	$M_o = w_j \frac{(H_j(k))}{M_0}$
Subgroup levels <i>MWPI</i> $(M_0(X^l))$ with the overall <i>MWPI</i>	$(M_0(X)) = \sum_{l=1}^m \nu^l M_0(X^l)$
% Contribution of each subgroup to the overall MWPI	$D_l^0 = v^l \frac{M_0(X^l)}{M_0(X)}$

• Table 2 presents India's calculated adjusted headcount ratio (H), intensity (A) and multidimensional water poverty index (MWPI).

Table2: Multidimensional Water Poverty Index (k = 30%)							
Headcount ratio (H) Intensity (A) MWPI							
Round 1	0.754	0.596	0.449				
Round 2 0.713 0.573 0.409							
Source: Authors' computation, 2023							

Cont.....

Indian Institute of Technology Madras

Table 3. Contribution of poverty status with k = 30% to MWPI

	Poverty		Multi-dimensionally	Multi-dimensionally
	Status	Percentage	non-poor	poor
	Non-poor	2.80	24 64	
	Moderate	21.85	24.04	
Round 1	Poor	68.46		
	Extremely			75.36
	poor	6.90		
	Non-poor	2.39	28 20	
	Moderate	26.31	20.70	
Round 2	Poor	65.12		
	Extremely			71.30
	poor	7.15		
Source: Auth	ors' computat	tion, 2023		
				Cont

Cont.....

Table 4: Percentage contribution of indicators to the MWPI with k = 30%								
	Dimension	Access		S	tress	Quality Capaci		city
	Indicator Source Sanitation		Supply	Time	Treatment	Adequacy	Storage	
	Weight	0.25	0.25	0.15	0.15	0.10	0.05	0.05
	Uncensored							
	(HCR)	0.73	0.59	0.33	0.25	0.68	0.08	0.10
Round1	Censored (HCR)	0.67	0.58	0.21	0.25	0.60	0.07	0.09
	Percentage							
	contribution (in							
	%)	37.03	32.49	7.14	8.30	13.32	0.75	1.06
	Weight	0.25	0.25	0.15	0.15	0.10	0.05	0.05
	Uncensored							
	(HCR)	0.70	0.47	0.39	0.23	0.70	0.07	0.10
Round2	Censored (HCR)	0.63	0.47	0.23	0.23	0.58	0.06	0.09
	Percentage							
	contribution (in							
	%)	38.73	28.46	8.38	8.28	14.26	0.72	1.11
Source: Authors'	computation, 2023							

Rida Wanbha Nongbri

• State-wise classification

Rida Wanbha Nongbri

Indian Institute of Technology Madras

Table 5: Classification of Subgroup MWPI									
	Roi	und 1	d 1 Round 2						
	Rural Urban Rural Urban								
Population	25983	10686	25152	11517					
Population Distribution	0.709	0.291	0.686	0.314					
HCR	0.862	0.491	0.822	0.475					
Intensity	0.610	0.538	0.591	0.507					
MWPI (X ^I)	0.526	0.264	0.486	0.241	Rou	nd 1	Round 2		
% contribution of X ^I to MWPI	% contribution of X ^I to MWPI 83.0		81.4	18.5	Rural	Urban	Rural	Urban	
Headcount ratio of the indicator					0/			- >d	
Headcount ratio of the indicator					% COI	ntribution of	the indicato	r to X'	
Source	0.77	0.40	0.74	0.41	% со ї 36.8	37.8	the indicato 37.9	r to X ' 42.5	
Source Sanitation	0.77 0.71	0.40 0.27	0.74 0.60	0.41 0.17	% сог 36.8 33.9	37.8 25.2	37.9 30.8	42.5 18.0	
Source Sanitation Supply	0.77 0.71 0.20	0.40 0.27 0.24	0.74 0.60 0.23	0.41 0.17 0.22	% сог 36.8 33.9 5.8	1771000100 05 37.8 25.2 13.7	37.9 30.8 7.1	42.5 18.0 14.0	
Source Sanitation Supply Time	0.77 0.71 0.20 0.30	0.40 0.27 0.24 0.13	0.74 0.60 0.23 0.27	0.41 0.17 0.22 0.13	% cor 36.8 33.9 5.8 8.5	1777 37.8 25.2 13.7 7.2	7.9 37.9 30.8 7.1 8.4	42.5 42.5 18.0 14.0 7.8	
Source Sanitation Supply Time Treatment	0.77 0.71 0.20 0.30 0.69	0.40 0.27 0.24 0.13 0.37	0.74 0.60 0.23 0.27 0.68	0.41 0.17 0.22 0.13 0.36	% cor 36.8 33.9 5.8 8.5 13.2	14.00 14.00 150 150 150 150 150 150 150 150 150 1	<i>the indicato</i> 37.9 30.8 7.1 8.4 14.1	42.5 42.5 18.0 14.0 7.8 15.0	
Source Sanitation Supply Time Treatment Adequacy	0.77 0.71 0.20 0.30 0.69 0.07	0.40 0.27 0.24 0.13 0.37 0.05	0.74 0.60 0.23 0.27 0.68 0.07	0.41 0.17 0.22 0.13 0.36 0.04	% cor 36.8 33.9 5.8 8.5 13.2 0.7	1.000000000000000000000000000000000000	the indicato 37.9 30.8 7.1 8.4 14.1 0.7	42.5 42.5 18.0 14.0 7.8 15.0 0.9	
Source Sanitation Supply Time Treatment Adequacy Storage	0.77 0.71 0.20 0.30 0.69 0.07 0.11	0.40 0.27 0.24 0.13 0.37 0.05 0.06	0.74 0.60 0.23 0.27 0.68 0.07 0.10	0.41 0.17 0.22 0.13 0.36 0.04 0.08	% cor 36.8 33.9 5.8 8.5 13.2 0.7 1.0	1.2 1.2 13.7 7.2 14.0 1.0 1.2	the indicato 37.9 30.8 7.1 8.4 14.1 0.7 1.0	42.5 42.5 18.0 14.0 7.8 15.0 0.9 1.7	

Cont.....

Dimension-wise ranks at the state level

Highest	Round 1	Round 2		Least	Round 1	Round 2
Access	Bihar	Bihar		Access	Sikkim	Sikkim
Stress	Andhra Pradesh	Pondicherry	Stress		Dadra Haveli	Sikkim
Quality	Bihar	Bihar		Quality	Goa	Kerela
Capacity	Bihar	Bihar		Capacity	Maharashtra	Gujarat

Robustness check

• Ranking and dominance of poverty cut-off

Table6: Multidimensional Water Poverty Index										
						K =				
		K = 5%	K = 30%	K = 50%	K = 80%	100%				
	HCR	0.972	0.754	0.601	0.069	0.000				
Round1	Intensity	0.508	0.596	0.654	0.856	1.000				
	MWPI	0.494	0.449	0.393	0.059	0.000				
	HCR	0.976	0.713	0.519	0.072	0.000				
Round2	Intensity	0.474	0.573	0.650	0.856	1.000				
	MWPI	0.463	0.409	0.337	0.061	0.000				
Source: Author con	Source: Author computation, 2023									

• Testing for rank robustness concerning changes in the indicator weight for state ranking.

The findings showed that the correlation between the states' ranking, as obtained from the two alternative weighting structures while considering the weight applied in the primary analysis as the baseline, and changes in the weight of the indicators was .88 for R1 and .87 for R2, suggesting a perfect association of ranks.

Conclusion

- The results indicate that one possible area where policymakers can intervene is on specific indicators that can have long-term effects of reducing the overall poverty level of the country.
- Another focused intervention is either on the headcount ratio or the Intensity value of the respective state to find more effective results in reducing water poverty.

According to the December 2022 report of the Ministry of Jal Shakti, the implementation of JJM achieved over 55% coverage in supplying piped water to rural households.

India still requires continuous efforts and a comprehensive approach to catalyse its progress towards achieving SDG 6. Challenges related to water quality, reliability, infrastructure maintenance and equitable distribution remain significant concerns.

Therefore, with MWPI insightful data on regions experiencing the highest water poverty levels, policymakers and stakeholders can properly prioritise initiatives and allocate resources.

